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Abstract
It is argued that the non-Fermi liquid behavior observed in CeCoIn5 and its solid solution
CeCo(In,Sn)5 around the upper critical field Hc2 can be understood as the antiferromagnetic
(AF) quantum criticality induced by the critical fluctuations associated with an onset of the
d-wave superconductivity with B1g(dx2−y2) or B2g(dxy) symmetry. A basic idea is that the effect
of SC fluctuations on the mode-coupling term of the AF susceptibility works to promote the
AF-order while those effect on the RPA term works to suppress the AF tendency. On the basis
of this idea, the pinning of AF-QC around Hc2 observed in CeCo(In,Sn)5 can be qualitatively
explained.

The recent discovery of non-Fermi liquid (NFL) behavior
around the upper critical field Hc2(0) in CeCoIn5 (and its
solid solution with In slightly substituted by Sn) has been
attracting much attention [1–3]. When a variety of magnetic
fields are applied at low temperatures, the relationship between
the resistivity ρ and temperature T is given by the equation
ρ = ρ0 + AT 2 where the coefficient A of the T 2 term
strongly depends on the strength of the magnetic field. When
the magnetic field H is far larger than the critical field
HQCP (denoted as H ∗ in [1]), the coefficient A is technically
independent of the magnetic field H and the system is still in a
paramagnetic state, meaning that AF-ordering does not appear.
There is a tendency that as the magnetic field H becomes
small and approaches HQCP, the coefficient A becomes large
and diverges. The H dependence of A at T = 0 K
is experimentally determined as A ∝ (H − HQCP)

α with
parameters HQCP = 5.1 ± 0.2 T and α = −1.37 ± 0.1.
We can easily see that it exhibits quantum critical behavior at
H = HQCP where the coefficient A diverges. The FL theory
tells us that the divergence of the coefficient A means the
gigantic enhancement of the effective mass of a renormalized
electron. This mass enhancement reflects the emergence of
antiferromagnetism at T = 0 K and H = HQCP, in other

words field-induced AF quantum criticality. What is singular
and intriguing is that HQCP is close to Hc2(0).

Moreover, what is surprisingly novel is that the NFL
behavior, the emergence of AF-QC, is pinned at H � Hc2(0)
even though Hc2(0) is considerably altered by the substitution
of In by Sn, e.g; Hc2(0) is reduced to about a half by the
substitution of In by Sn of about 10% [3]. It means that the
pinning of AF-QC around Hc2(0) invariably occurs regardless
of the substitution of In by Sn. This gives us the validation
of our opinion that the pinning of AF-QC around Hc2 is not
accidental but essential, thus implying that there is a physical
rationale behind it. Furthermore, when we pay attention to
the generally conceived fact that the superconducting (SC)
fluctuations are remarkable at the boundary between the SC
and normal states, this suggests that the NFL behavior, the
emergence of AF-QC, be triggered by the one-dimensional
(1d) nature of the superconducting (SC) fluctuations under an
applied magnetic field H � Hc2(0).

The purpose of this paper is to demonstrate that the
case mentioned above proves to hold true, by analyzing
the effect of SC fluctuations on the antiferromagnetic (AF)
susceptibility in the framework of the mode-coupling theory
for the onset of AF-ordering. A fundamental idea is that
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Figure 1. Feynman diagram for the mode-coupling theory with SC fluctuations. The double wavy line represents χs, the single wavy line χso,
the single solid line Green’s function for the itinerant fermions G, the double dashed line the SC fluctuations D, and the filled circle the
coupling constant g. � represents the polarization function of itinerant fermions.

the mode-coupling terms of AF fluctuations, which negatively
contribute to AF-ordering, are suppressed by SC fluctuations,
thus leading to the stabilization of the AF-ordering. In
the low temperature limit T → 0, CeCoIn5 does not
exhibit AF-ordering, but exhibits d-wave superconductivity.
However, it is believed to be located close to the AF quantum
critical point (QCP) [1, 4, 5]. This is also reinforced by a
phase diagram confirmed by a series of compounds of solid
solutions Ce(Cox Rh1−x)In5, suggesting that rather strong AF
fluctuations prevail in CeCoIn5 [6]. Therefore, from the
standard spin-fluctuation theory of itinerant magnetism [7], it
is understood that the mode-coupling terms barely suppress the
occurrence of AF-ordering in CeCoIn5. Then, it is expected
that the SC fluctuations are crucial in giving rise to the AF-
QCP, which is located at the boundary between the SC and
normal states.

The reason why the SC fluctuations are so crucial is
that they become one-dimensional near H � Hc2(0) due
to the Landau quantization of the Cooper-pair wavefunction.
CeCoIn5 is a quasi-two-dimensional d-wave superconductor
and its SC fluctuations are three-dimensional (3d) without
an applied magnetic field. However, an applied magnetic
field perpendicular to the basal plane of CeCoIn5 removes the
freedom of its SC fluctuations along the x and y axes since the
Landau quantization of the Cooper-pair wavefunction makes
CeCoIn5 to have discrete energy levels of x and y components
and a continuous energy level of z component, thus meaning
that the SC fluctuations become one-dimensional along the z-
axis. Moreover, the mode-coupling theory has been successful
so far in offering us an elaborate description of how a variety
of AF-QCPs emerge [8]. Therefore, we will try to explain
the appearance of the novel AF-QCP on the basis of mode-
coupling theory with SC fluctuations.

The dynamical susceptibility χs(Q + q, iωm) is expressed
in the mode-coupling theory as [9–11]

χ−1
s (Q + q, iωm) = χ−1

s0 (Q + q, iωm)−�(Q + q, iωm), (1)

Q � (π/a, π/a, 0), (2)

where χs0 is the dynamical susceptibility of the localized
spin fluctuations without the coupling with itinerant fermions,

Q is AF-ordering vector, and a is the lattice constant in
the basal plane perpendicular to the c-axis. The localized
spin fluctuation χs0 is coupled with the itinerant-fermion
polarization � as shown in equation (1) and figure 1. The
polarization function �(Q + q, iωm) plays a crucial role in
giving rise to the AF-QCP and is given as follows:

�(Q + q, iωm) = �0(Q + q, iωm)+�1(Q + q, iωm)

+�2(Q + q, iωm)+�3(Q + q, iωm), (3)

where �0 and �1 are defined as

�0(Q + q, iωm) ≡ −g2T
∑

n

∑

p

G(p, iεn)G

× (p + Q + q, iεn + iωm), (4)

�1(Q + q, iωm) ≡ −g4T
∑

m′

∑

q′
[6G(s)

4 − G(v)
4 ]

× χs(Q + q′, iωm′ ), (5)

where G(p, iεn) is Green’s function for the itinerant fermion,
and g is the coupling constant between localized spin
fluctuations and itinerant fermions, and related to the fermion
coherence temperature (or the effective Fermi energy) E∗

F by
zg ∼ E∗

F, with z being the renormalization amplitude [9]. G(s)
4

and G(v)
4 are defined as

G(s)
4 = T

∑

n

∑

p

G(p, iεn)G
2(p + Q + q, iεn + iωm)

× G(p + q − q′, iεn + iωm − iωm′), (6)

G(v)

4 = T
∑

n

∑

p

G(p, iεn)G(p + Q + q, iεn + iωm)

× G(p − Q − q′, iεn − iωm′)

× G(p + q − q′, iεn + iωm − iωm′), (7)

where G(s)
4 represents each of the two left diagrams of �1,

and G(v)

4 represents the last diagram of �1 as shown in
figure 1. Using equations (1), (3), and (4), we expand the spin-
fluctuation propagators χs(Q + q, iωm) and χRPA(Q + q, iωm)

with respect to q and ωm in the vicinity of AF-order vector Q
as

χs(Q + q, iωm) = N∗
F

r + Aq2 + c|ωm| , (8)
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χRPA(Q + q, iωm) = χ−1
s0 (Q + q, iωm)

−�0(Q + q, iωm) = N∗
F

r0 + Aq2 + c|ωm| , (9)

where N∗
F is the density of states (DOS) of quasiparticles at the

Fermi energy. Parameters r and r0 denote the distances from
the AF-QCP in the mode-coupling theory and random phase
approximation (RPA), respectively. The relations r > 0 and
r = 0 correspond to the paramagnetic state and the AF-QCP,
respectively.

The polarization function � can be separated into two
parts as shown in figure 1. One consists of the polarization
functions �0 and �1 without the effect of the SC fluctuations,
both of which are conventionally involved into the mode-
coupling theory. The other consists of the polarization
functions �2 and �3 with the effect of the SC fluctuations.
The polarization �1 includes the dynamical susceptibility χs

in a self-consistent fashion. While �0 associated with RPA
promotes the AF-QCP, �1 suppresses it. Near the AF-QCP,
the negative contribution of �1 to the appearance of the AF-
QCP barely precedes the positive one of χ−1

RPA(= χ−1
so −�0) to

it. The state without the effect of the SC fluctuations as shown
in figure 1(a) is considered to be in such a situation where the
system is in the proximity of the AF-QCP [4, 5].

Now, we take into account the fact that the SC fluctuations
are remarkable in the vicinity of the upper critical field
Hc2(0) = HQCP at T = 0 K. Therefore, we include the
effect of the SC fluctuations into the polarization functions �0

and �1 as shown in figure 1(b). In the vicinity of Hc2(0),
CeCoIn5 is in the FFLO state where a Cooper-pairing state
with a finite center-of-mass momentum q0 is realized due to
the Pauli paramagnetic effect [12–14]. Considering the FFLO
state, the resultant effective Hamiltonian is given by

H =
∑

p,σ

ξ(p)c+
p,σ cp,σ

+
∑

p,p′
Vp,p′c+

p+q0/2,↑c+
−p+q0/2,↓c−p′+q0/2,↓cp′+q0/2,↑, (10)

where ξ(p) is the energy dispersion of quasiparticles with
momentum p measured relative to the Fermi energy, q0 is
the center-of-mass momentum of a Cooper-pair, and Vp,p′ is
the Cooper-pairing potential. Since CeCoIn5 is in the clean
limit [15], the single-particle Green’s function for the FFLO
state is given by

G(p, εn) = [iεn − ξ(p)+ σ zμB H ]−1, (11)

where εn = (2n +1)πT is a fermion Matsubara frequency and
σ z is the z component of the Pauli matrices.

The phase transition from the normal state to the FFLO
state in the vicinity of the absolute zero temperature is known
to be a first-order one [16, 17]. However, the phase transition
around H ∼ Hc2(T � Tc0) can be regarded as a weakly
first-order one because we are interested in the global behavior
of the SC and AF fluctuations as T approaches zero from
the region of T ∼ Tc0 with Tc0 being the superconducting
transition temperature without magnetic field. Namely, as far
as the gross T -dependence of the AF susceptibility χs(Q) is
concerned, the difference in the type of the SC transition at

H ∼ Hc2(T � Tc0), that is to say, whether its transition is a
weakly first-order one or second-order one, is not expected to
give an essential influence on the gross T -dependence of the
AF susceptibility χs(Q) except in the narrow low temperature
region T � Tc0. As a consequence, it gives us a validation of
the derivation of the SC fluctuations around H = Hc2(0)(T �
Tc0) as T decreases from Tc0 to T = 0 on the basis of the
second-order transition.

After straightforward but rather lengthy calculations based
on equations (10) and (11), the SC fluctuation propagator D
for the FFLO state is obtained as [18]

D(q, iωm) = 1

N∗
F

[
ln

(
T

Tc0

)
+

∫
d3p̂
4π

ψ

(
1

2
+ |ωm |

4πT

+ i
2μB H + 〈vp · (q0 + q)〉FS

4πT

)
− ψ

(
1

2

)]−1

, (12)

where Tc0 is the superconducting transition temperature
without the magnetic field, ψ is the digamma function, vp

is the velocity of the quasiparticle, and 〈· · ·〉FS denotes the
averaging over the Fermi surface. Furthermore, CeCoIn5 is
a type-II superconductor in which the orbital effect is to be
considered [12]. Then, the eigenvalue of q2 is quantized as

q2 =
(

n + 1

2

)
4eH

c
+ q2

z , (n = 0, 1, 2, . . .), (13)

where H is the magnetic field, and qz is the z component
of the wavevector q of the SC fluctuations. Performing the
summation of D(q, iωm) over q and ωm with the use of
equations (12) and (13) (with n = 0), we obtain in the low
temperature limit

FSC ≡ T
∑

q

∑

iωm

D(q, iωm)/E∗
F

2

� γ (m∗/m)1/2 − δ(m∗/m)T, (14)

where m is the mass of a bare electron, m∗ is the effective mass
of quasiparticles, and E∗

F ≡ h̄2k2
F/2m∗ is the renormalized

Fermi energy. It is noted that the q-dependence of the SC
fluctuations near the superconducting transition temperature
is one-dimensionally parameterized by qz due to the Landau
quantization (13), giving rise to an enhanced fluctuation effect.
We can see from equation (14) that at low temperatures, the
sum of the SC fluctuations does not diverge but has a peak with
a cusp structure around T = 0 K and exhibits a linear decrease
with temperature, which is shown in figure 2.

The Feynman diagrams for �2 (correction to �0 by the
SC fluctuations) are shown in figure 3. Those for �(1)

3 and
�
(2)
3 (correction to �1 by the SC fluctuations), where �(1)

3 is a
type of Green’s function correction to the polarization function
and �(2)

3 is that of the vertex correction to the polarization
function, are shown in figures 4 and 5, respectively. Owing to
the contribution of the SC fluctuations given by equation (14),
the signs of �2 and �3 (≡�(1)

3 + �
(2)
3 ) are opposite to those

of �0 and �1, respectively. Namely, while �0 promotes the
appearance of the AF-QCP, �2 suppresses it. Similarly, while
�1 suppresses the appearance of the AF-QCP, �3 promotes
it. Here, we neglect �2, since |�2|/|�3| � 1 as we discuss
below.

3
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Figure 2. FSC versus temperature with FSC being defined by
equation (14).

Figure 3. Feynman diagrams for the polarization function �2. The
single solid line represents the Green’s function of the itinerant
fermions G, the double dashed line the SC fluctuations D, and the
filled circle the coupling constant g.

Figure 4. Feynman diagrams for the polarization function �(1)
3 . The

double wavy line represents χs, the single solid line the Green’s
function of the itinerant fermions G, the double dashed line the
SC fluctuations D, and the filled circle the coupling constant g. In
addition to these diagrams, there exist other longitudinally
symmetrical Feynman diagrams, in which χs is situated at
the bottom.

Thus, setting q = 0 and ωm = 0 in equations (1), (3)–(5),
and (9), we obtain

χ−1
s (Q, 0) � {χ−1

RPA(Q, 0)−�1(Q, 0)} −�3(Q, 0). (15)

Let us for convenience introduce the following parameters in
the conventional manner of the mode-coupling theory [7]:

y∗ = {
χ−1

RPA(Q, 0)−�1(Q, 0)
}
/(Aq2

B/N∗
F ), (16)

y = χ−1
s (Q, 0)/(Aq2

B/N∗
F ), (17)

Figure 5. Feynman diagrams for the polarization function �(2)
3 . The

double wavy line represents χs, the single solid line the Green’s
function of the itinerant fermions G, the double dashed line the
SC fluctuations D, and the filled circle the coupling constant g.

�3(Q, 0)∗ = �3(Q, 0)/(Aq2
B/N∗

F ), (18)

where qB is the effective zone boundary wavenumber. Then,
equation (15) is expressed as

y � y∗ −�∗
3(Q, 0)

=
{

y∗/|�1(Q, 0)| − �3(Q, 0)/|�1(Q, 0)|
(Aq2

B/N∗
F )

}
|�1(Q, 0)|,

(19)

where y∗ corresponds to the deviation from the AF-QCP
without the effect of the SC fluctuations and y corresponds
to the deviation including their effect. The temperature
dependence of y for 3d-AF is given by [8, 9, 19]

y = y0 + 3

2
y1t

∫ xc

0
dxx2

{
ln u − 1

2u
− ψ(u)

}
, (20)

with

y0 ≡ y at T = 0 K, x ≡ q/qB, xc ≡ qc/qB,

u ≡ (y + x2/t), t ≡ T/T0, T0 ≡ Aq2
B/2πC,

(21)
where qc is the cut-off wavenumber and t is the dimensionless
reduced temperature. Using the interpolation formula with
high accuracy

ln u − 1

2u
− ψ(u) � 1

2u(1 + 6u)
, (22)

equation (20) is reduced to

y � y0 + 3

2
y1t

∫ xc

0
dx

{
x2

2(x2 + y)
− x2

2(x2 + y)+ t/3

}
.

(23)

If the AF-ordering occurs, setting y = 0 and t = tN in
equation (23), the Néel temperature TN is given by

0 � y0 + 3

2
y1tN

∫ xc

0
dx

{
1

2
− x2

2x2 + tN/3

}
, (24)

4
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Figure 6. Temperature dependence of �3(Q, 0)/|�1(Q, 0)| considering the SC fluctuations (a) for m∗/m = 400, 500, 600 with h/E∗
F = 0.1

and (b) for h/E∗
F = 1/10, 1/20, 1/30 with m∗/m = 400.

where tN = TN/T0 is the dimensionless reduced Néel
temperature. Here, the condition y0 = 0 represents the AF-
QCP. The coefficient �3(Q, 0)/|�1(Q, 0)| included in the
second term in the bracket {· · ·} of the right-hand side of
equation (19) is positive and exhibits a monotonous increase
with decreasing temperature as shown in figure 2, thus
promoting the AF-QCP. Using equation (14) and collecting the
terms shown in figures 3–5, we obtain, in the low temperature
limit,

�3(Q, 0)/|�1(Q, 0)| = 93ζ(5)

112π2ζ(3)

× [γ (m∗/m)1/2 − δ(m∗/m)T ]
[

E∗
F

max(T, h/2π)

]2

×
{

46/5(dxy)

4/5 (dx2−y2),
(25)

�2(Q, 0)/�0(Q, 0) = 7ζ(3)

8π2

× [γ (m∗/m)1/2 − δ(m∗/m)T ]
[

E∗
F

max(T, h/2π)

]2

×
{

−3(dxy)

−1(dx2−y2),
(26)

|�1(Q, 0)|/�0(Q, 0) ∼
[

zg

max(T, h/2π)

]2

× ln
E∗

F

max(T, h/2π)
� 1, (27)

where h is the energy scale parameterizing the deviation from
the perfect nesting [9]. Using equations (25)–(27), we obtain

|�2(Q, 0)|/|�3(Q, 0)| ∼ |�0(Q, 0)|/|�1(Q, 0)|
∼ [max(T, h/2π)]2

E∗2

F ln E∗
F

max(T,h/2π)

� 1, (28)

where zg ∼ E∗
F has been used. The factor [γ (m∗/m)1/2 −

δ(m∗/m)T ] on the right-hand side of equation (25) is due to
the SC fluctuations on the right-hand side of equation (14). On
the other hand, the factor [E∗

F/max(T, h/2π)]2 on the right-
hand side of equation (25) depends on both the temperature T
and energy scale parameterizing the deviation from the perfect

nesting h. Therefore, in a region where T < h/2π , �3/|�1|
is dominated by the former factor and it represents the T -
linear increase with decreasing temperature. However, in a
region where T > h/2π , �3/|�1| is dominated by the latter
factor and it represents the inverse-T quadratic increase with
decreasing temperature.

CeCoIn5 belongs to a family of heavy fermions and thus
we assume that the effective mass m∗ of a quasiparticle is so
great that it reaches from several hundreds to a thousand times
as much as that of a bare electron m. The ratio of the effective
mass of a quasiparticle to the mass of a bare electron m∗/m
is proportional to the ratio of the Sommerfeld constant γ in
the low temperature limit, since γ = (π2/3)(m∗kF)k2

B/2π
2h̄2.

The Sommerfeld constant γ of CeCoIn5 in the low temperature
limit is given as γ ∼ 1 J K−2 mol−1 under the magnetic field
H ∼ 5 T [20], which is consistent with the entropy balance
argument at H = 0 T. Therefore, m∗/m ∼ 103 as mentioned
above. Then, we used m∗/m = 400, 500, and 600 as typical
examples in figures 6–8. On the other hand, the effective
Fermi energy E∗

F is estimated as follows. Using the lattice
constants a = 4.612 Å and c = 7.549 Å [21], the Fermi
energy of a non-interacting electron EF in the 3d spherical
model is estimated as EF = h̄2k2

F/2m ∼ 1.4 × 104 K. Thus,
E∗

F ∼ (m/m∗) × 1.4 × 104 K is 35 K, 28 K, and 24 K for
m∗/m = 400, 500, and 600, respectively.

The factors 46/5(dxy) and 4/5(dx2−y2) in the right-hand
side of equation (25) are numerical factors arising from
the diagrams of the SC fluctuation correction of figures 4
and 5 for dxy and dx2−y2 pairings. The difference of the
numerical factors stems from the transformation property of
the Cooper-pair wavefunctions φxy(k) = 2 sin kx sin ky and
φx2−y2(k) = cos kx − cos ky with respect to k → k +
(π/a, π/a, 0). It can easily be seen from equation (25) that
�3(Q, 0)/|�1(Q, 0)| of the dxy superconductor is about ten
times larger than that of the dx2−y2 one. Moreover, we can
see from figure 6 that in the vicinity of the absolute zero
temperature, �3(Q, 0)/|�1(Q, 0)| is linear in temperature
with a monotonous increase as temperature decreases, due to
the SC fluctuations as shown in figure 2.

Let us denote the solution of equation (23) with y0 = y∗
0

by y∗. Namely, y∗
0 by itself does not lead to the appearance

of the AF-QCP. This can be immediately seen from the fact

5
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Figure 7. Temperature dependence of the deviation from the AF-QCP (a) for m∗/m = 400 and (b) for m∗/m = 500 where h/E∗
F = 1/10,

Tc = 0 K, H = 5.1 T, and y1 = 1 with a dx2−y2 Cooper-pair wavefunction. The filled mark represents tN, and tN = 5.0 × 10−4 for (a) and
tN = 2.3 × 10−3 for (b). (1) y∗: the deviation from the AF-QCP (without the SC fluctuations). (2) y: the deviation from the AF-QCP (with the
SC fluctuations). (3) �3(Q, 0)/|�1(Q, 0)|: the correction of the deviation from the AF-QCP due to the SC fluctuations.

Figure 8. Temperature dependence of the deviation from the AF-QCP (a) for h/E∗
F = 1/10 and (b) for h/E∗

F = 1/30 where m∗/m = 400,
Tc = 0 K, H = 5.1 T, and y1 = 1 with a dx2−y2 Cooper-pair wavefunction. The filled mark represents tN, and tN = 5.0 × 10−4 for (a) and
tN = 6.0 × 10−3 for (b). (1) y∗: the deviation from the AF-QCP (without the SC fluctuations). (2) y: the deviation from the AF-QCP (with the
SC fluctuations). (3) �3(Q, 0)/|�1(Q, 0)|: the correction of the deviation from the AF-QCP due to the SC fluctuations.

that y∗ > 0 over the entire region of temperature as shown in
figures 7, 8. However, the additional involvement of �3/|�1|
as pertinent to the SC fluctuations gives rise to the appearance
of the AF-QCP rather easily since y∗

0 � 1 implies that
CeCoIn5 is located in a state which is not far from the AF state
without the magnetic field. This is a fundamental reason why
the SC fluctuations near Hc2 promote the AF-QCP in the nearly
AF metals.

Of course, in order to make the system arrive at the AF-
QCP just at T = 0 and H = Hc2(0), we need fine tuning
of the parameters, such as the constant coupling g, the mass
enhancement factor m∗/m, and the degree of deviation from
the perfect nesting h. However, since we are interested in the
gross T -dependence of the AF susceptibility χs(Q) from Tc0

down to T = 0, the fine tuning of y0 = y(T = 0) is not so
crucial to obtain NFL behavior of χs(Q) ∝ 1/y except in the
narrow temperature region T � Tc0, as long as |y0| � 1. This
is a similar situation to where we were not concerned about
whether the SC transition was a first-order transition or second-
order one around H = Hc2 (T � Tc) as long as the first-order
transition was a weak one.

The effective mass ratio m∗/m dependence of �3/|�1|
is shown in figure 6(a), which reveals that larger m∗/m leads
to larger �3/|�1|. This behavior is attributed to the fact
that �3/|�1| is significantly affected by the SC fluctuations,
which are larger as m∗/m becomes larger as shown in figure 2.
Similarly, the energy scale for the deviation from the perfect
nesting h dependence of �3/|�1| is shown in figure 6(b),
which reveals that �3/|�1| is significantly affected by h in a
manner in which smaller h leads to larger�3/|�1|. The reason
is that �3/|�1| contains the factor [g/max(T, h/2π)]2 on the
right-hand side of equation (25) and it enables an inverse-T
quadratic increase in �3/|�1| with decreasing temperature in
the region where T > h/2π , as mentioned above.

In conclusion, the novel coincidence of HQCP and Hc2(0)

at T = 0 K is not accidental but essential and it owes much
to the SC fluctuations. This is because the SC fluctuations
are remarkable since they become one-dimensional near H �
Hc2(0) owing to the Landau quantization of the Cooper-pair
wavefunction. We have explained the relevance of the SC
fluctuations to this novel coincidence by using the mode-
coupling theory including the SC fluctuations. According to
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this theoretical analysis, it becomes clear that the contribution
of the SC fluctuations to the appearance of QCP greatly
depends on the effective mass ratio m∗/m, the Cooper-pair
wavefunctions (dx2−y2 and dxy ), and the energy scale for
deviation from the perfect nesting h. That is to say, the larger
m∗/m and the smaller h, the larger the contribution of the SC
fluctuations will be. Furthermore, the contribution of the SC
fluctuations due to the dxy superconductor is about ten times
larger than that of the SC fluctuations due to the dx2−y2 one.

Finally, it is noted that the field-induced QCP around Hc2

proposed above is not unique to CeCoIn5 but can be far more
widespread. Namely, similar behavior is also observed both in
NpPd5Al2 [22] and in Tl2Ba2CuO6 [23].
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